

PROGRAMA DE DISCIPLINA

DISCIPLINA: GEOMÁTICA APLICADA À ENGENHARIA CIVIL CÓDIGO: EPR - 07945

CARGA HORÁRIA SEMANAL: HORAS TEORIA: 02 EXERCÍCIO: 0 LABORATÓRIO: 01

CARGA HORÁRIA SEMESTRAL: 90 HORAS CRÉDITOS: ANO:

PROGRAMA DETALHADO

EMENTA:

Introdução à Ciência do Mapeamento. Forma e Dimensão da Terra. Conceitos Topográficos: Planimetria e Altimetria. Cartografia Digital: Significado e aplicação do mapeamento. Cartometria: Teoria da distorção. Projeções cartográficas e Projeções Geodésicas. Representação Cartográfica. Tecnologia Cartográfica. Cartográfia gerais Topográfica е Especial. Cartografia Temática. Conceitos Geoprocessamento: espaço geográfico, região, relações espaciais, objetos espaciais. Sistemas de Informações Geográficas. Tipos de dados em GIS. Natureza e características de objetos espaciais. Fundamentos de modelagem espacial. Propriedades e representação de objetos espaciais. Modelos de coleta de dados. Modelos de armazenamento de dados. Modelo de recuperação de dados. Modelo de apresentação de dados. Modelo de referência em GIS: Classes e Objetos Geográficos. Definições. Exemplos Práticos de SIG´s: SPRING, ARC/VIEW, IDRISI, SPID® e GeoMedia.

Tópico 1

Planimetria: - Medidas Lineares - Direta, Indireta, Apresentação do Teodolito e Mira e Demonstração de Fórmulas. Medidas Angulares: Azimute, Rumo, Deflexões, Ângulos Internos. Declinação Magnética. Métodos de Levantamento Topográfico: Irradiação, Interseção e Poligonação. Métodos de Levantamento Altimétrtico: Barometria, Taqueometria e Nivelamento Geométrico.

Tópico 2

Introdução, conceitos iniciais, Comunicação cartográfica; Definição e metodologia da Cartografia.

O problema da representação cartográfica: geóide, elipsóide. Datum geodésico e altimétrico.

Tópico 3

Sistemas de coordenadas: planos, esféricos e elipsóidicos. Transformação de coordenadas UTM e Geográficas.

Tópico 4

Projecões cartográficas. Definição. Leis da deformação. Propriedades. Projeções conformes e equivalentes. Classificação das projeções: projeções azimutais, cilindricas, cônicas e convencionais. Principais projeções. O Sistema UTM.

Tópico 5

PROGRAMA DE DISCIPLINA

DISCIPLINA: GEOMÁTICA APLICADA À ENGENHARIA CIVIL CÓDIGO: EPR - 07945					
CARGA HORÁRIA SEMANAL: HORAS	TEORIA: 02		EXERCÍCIO: 0		LABORATÓRIO: 01
CARGA HORÁRIA SEMESTRAL: 90 HORAS	CRÉDITOS:		ANO:		
Programa Detalhado					

Cartografia Temática, representações qualitativas e quantitativas. Convenções cartográficas; Cores e símbolos.

Tópico 6

Princípios Básicos, Sensores e Plataformas de Sensoriamento Remoto, Processamento Digital de Imagem, Pré-Processamento de Dados de Sensoriamento Remoto, Técnicas de Realce, Transformação de Imagem, Técnicas de Filtragem, Classificação de Imagem.

Tópico 7

O Sistema de Referência do Sistema GPS; Sistemas de Coordenadas; Sistemas Geodésicos; O Sistema Geodésico WGS84; Os Sistemas Geodésicos Nacionais; Altimetria com GPS.

Tópico 8

Fotogrametria: Aérea e Terrestre. Classificação de Câmaras Aéreas. Escala de um Fotograma; Formatos de Filme; Escala de um Fotograma; Direção do Vôo, Sobreposição longitudinal; Sobreposição lateral; Cálculo do número de faixas; Cálculo do número de fotos por faixa; Número total de fotos; Orientação Interior; Parâmetros de calibragem da câmara; Orientação Relativa; Pontos de Controle; Pré-sinalização; Aquisição dos pontos de controle topográfico; Pontos de Passagem; Orientação Absoluta.

Tópico 9

Cartografia Digital - Estruturas de dados: vetorial e matricial.

Conversão analógico-digital. Métodos e equipamentos de digitalização.

Pesquisa, seleção e preparo de dados para construção de uma base cartográfica digital. Digitalização e aspectos a considerar visando a utilização dos dados em SIG. Conceituação, Mapeamento Automatizado, Representação de Dados Geográficos; Componentes de um SIG; Aquisição de Dados: Entrada de Dados Raster, Entrada de Dados Vetorial, Dados não Espaciais; Integração de Dados Espaciais e não Espaciais; Dados Sócio-Econômicos, Dados Ambientais; Objetos e Relacionamentos Espaciais; Manipulação e Análise Espacial; Implantação de um SIG. Edição dos dados em SIG. Topologia e geocodificação.

Tópico 10

Sistemas de Informações Geográficas. Implantação de um SIG. Edição dos dados em SIG. Topologia e geocodificação. Aplicações. Trabalhos práticos. Linguagens de

PROGRAMA DE DISCIPLINA

DISCIPLINA: GEOMÁTICA APLICADA À ENGENHARIA CIVIL

CARGA HORÁRIA SEMANAL: HORAS

CARGA HORÁRIA SEMESTRAL: 90 HORAS

CRÉDITOS:

CARGA HORÁRIA SEMESTRAL: 90 HORAS

CRÉDITOS:

ANO:

programação em SIG. ArcView, SPRING, SPID.

OBJETIVO:

A disciplina Geomática, tem por objetivo, a integração de várias áreas do conhecimento, visando o estudo dos meios utilizados para a aquisição e gerenciamento de dados espaciais necessários às operações científicas, administrativas, legais e técnicas, envolvidas no processo de produção e gerenciamento da informação espacial. Congrega as atividades mais tradicionais como topografia, cartografia, hidrografia, geodésia, fotogrametria, com as novas tecnologias e os novos campos de aplicação como sensoriamento remoto, sistemas de informação geográfica e sistemas de posicionamento global por satélite, gerando produtos que podem constituir bases de dados digitais dos mais diversos tipos.

METODOLOGIA:

- aulas teóricas expositivas / aulas práticas em laboratório
- seminários, estudos dirigidos, debates / trabalhos práticos e elaboração de relatórios

SISTEMA DE AVALIAÇÃO:

Haverá 01(uma) prova teórica e 1(um) trabalho prático obrigatório com defesa do mesmo, aos quais serão atribuídas 2(duas) notas variando de 0 à 10. A média aritmética destas notas será representada por uma nota única, denominada média parcial.

Uma 2ª prova para verificação final, também com nota variando de zero a dez, será aplicada aos alunos com média parcial inferior a 7,0 (sete). Os alunos com média parcial igual ou superior a 7,0 (sete) serão automaticamente aprovados com média final igual a parcial, desde que tenham no mínimo 75% de freqüência às aulas dadas.

Os alunos com média parcial inferior a 7,0 (sete) terão suas médias multiplicadas por 2 e somadas a nota de verificação final que dividido por três gera a média final.

REVISÃO DE PROVAS

Conforme resolução nº 25/86 do conselho de ensino e pesquisa da UFES.

BIBLIOGRAFIA:

ARONOFF, STAN. - Geographic Information Systems: A Management Perspective.

PROGRAMA DE DISCIPLINA

DISCIPLINA: GEOMÁTICA APLICADA À ENGENHARIA CIVIL CÓDIGO: EPR - 07945					
CARGA HORÁRIA SEMANAL: HORAS	TEORIA: 02		EXERCÍCIO: 0		LABORATÓRIO: 01
CARGA HORÁRIA SEMESTRAL: 90 HORAS	CRÉDITOS:			ANC):
Programa Detalhado					

Ottawa: WDL - Publications, 1989.

BAKKER, M. P. R. Cartografia – Noções Básicas, DHN - Rio de Janeiro-RJ, 1965.

CÂMARA, GILBERTO. - Anatomia de Sistemas de Informação Geográfica: Visão Atual e Perspectivas de Evolução. In: SIMPÓSIO BRASILEIRO DE GEOPROCESSAMENTO, 2., 1993, São Paulo. Anais... São Paulo - SP: USP, 1993. CASTRO JUNIOR, Rodolfo M. C. Fundamentos Teóricos e Práticos em Geoprocessamento. Apostila e Notas de Aula de Geoprocessamento. Vitória. 1998. CHAVES, E. E. D. (1998). Análise da Qualidade de Dados Georreferenciados utilizando a Tecnologia GPS. Dissertação de Mestrado, USP, São Carlos.

GALO, M. Sistemas de projeção derivados da Projeção Transversa de Mercator: conceitos básicos e formulação, Notas de aula do curso de Graduação em Eng. Cartográfica, Presidente Prudente, 1999.

MALING, D. H. *Measurements from maps*. Principles and methods of cartometry, Pergamon Press, Oxford, 1989.

MALING, D. H. Coordinate Systems and Map Projection, Oxford: Pergamon Press, 2a. edição, 1993.

MENEGUETTE, A. *Introdução à Ciência do Mapeamento*. P. Prudente: edição da Autora, 1995.

MENEGUETTE, A. Fundamentos de Cartografia Matemática, P. Prudente: Edição da Autora, 1995.

MARTINELLI, M. (1991) Curso de Cartografia Temática, Editora Contexto, São Paulo.

Ем	<i>_</i>		
		ASSINATURA DO CHEFE DO DEPARTAMENTO	

PROGRAMA DE DISCIPLINA

DISCIPLINA: BANCO DE DADOS

CARGA HORÁRIA SEMANAL: HORAS

CARGA HORÁRIA SEMESTRAL: 30 HORAS

CRÉDITOS:

PROGRAMA DETALHADO

CÓDIGO: EPR - 05930

LABORATÓRIO: 0

ANO:

EMENTA:

Introdução aos Sistemas de Gerência de Bancos de Dados (SGBD); Características, usos, vantagens e tipos/evolução de SGBDs; Modelagem Conceitual: Modelo Entidade-Relacionamento, técnicas de modelagem. Modelo Relacional: Conceitos, Normalização. Introdução ao SQL.

Unidade 1: Introdução ao conceito de Banco de Dados

- 1.1. Conceitos Básicos
- 1.2. Dado
- 1.3. Informação
- 1.4. Organização Básica de Arquivos
- 1.5. Arquitetura para uso de Sistema de Gerência de Banco de Dados (SGBD)

Unidade 2: Banco de Dados

- 1.1. Sistema de Gerência de Banco de Dados
- 1.2. Processamento sem SGBD
- 1.3. Processamento com SGBD
- 1.4. Funções Relacionadas ao SGBD
- 1.5. Abstração de Dados
- 1.6. Independência de Dados
- 1.7. Modelos de Banco de Dados

Unidade 3: Fases de um Projeto de Banco de Dados

- 3.1. Construção do Modelo Conceitual
- 3.2. Construção do Modelo Lógico
- 3.3. Construção do Modelo Físico
- 3.4. Avaliação do Modelo Físico

Unidade 4: Abordagem Entidade-Relacionamento (ER)

- 4.1. Entidade, Relacionamento, Atributos
- 4.2. Auto-relacionamento
- 4.3. Cardinalidade
- 4.4. Generalização, Especialização
- 4.5. Construção de modelos ER

Unidade 5: Abordagem Relacional

- 5.1. Algebra Relacional
- 5.2. Composição de um banco de dados relacional
- 5.1.1. Tabelas
- 5.1.2. Chaves
- 5.1.3. Domínios
- 5.1.4. Restrições de integridade

Unidade 6: Normalização

PROGRAMA DE DISCIPLINA

DISCIPLINA: BANCO DE DADOS

CARGA HORÁRIA SEMANAL: HORAS

CARGA HORÁRIA SEMESTRAL: 30 HORAS

CRÉDITOS:

CARGA HORÁRIA SEMESTRAL: 30 HORAS

- 6.1. Teoria da Normalização
- 6.2. Fórmulas Normalizadas
- 6.3. Dependência Funcional

Unidade 7: Modelagem de Dados (ER ☐ Relacional)

- 7.1. Requisitos para Modelagem de Dados
- 7.2. Entidades, atributos e chaves primárias
- 7.3. Relacionamentos e chaves estrangeiras
- 7.4. Generalização, especialização

Unidade 8: Structure Query Language (SQL)

- 8.1. Estruturas Básicas
- 8.2. Linguagem de Definição de Dados (DDL)
- 8.3. Comandos SQL

Unidade 10: Segurança e Integridade

- 10.1. Visões do Modelo
- 10.2. Restrições de Integridade

Unidade 11: Sistema de Gerência de Banco de Dados

- 11.1. Arquitetura
- 11.2. Segurança
- 11.3. Integridade

Unidade 12: Instalação, configuração e Manutenção de SGBD

- 12.1. Diferenças entre os principais Banco de Dados
- 12.2. Instalação de um SGBD
- 12.3. Configuração e Manutenção
- 12.4. Criação de um BD (Prático)

OBJETIVO:

A disciplina de Tópicos Especiais em Desenho Auxiliado por Computador para Engenharia tem como objetivo o de apresentar os principais conceitos de bancos de dados, focando nos aspectos de modelagem e manipulação de dados, capacitando o aluno no uso dos aspectos teóricos e práticos de bancos de dados.

METODOLOGIA:

- aulas teóricas expositivas
- trabalhos práticos e elaboração de relatórios

SISTEMA DE **A**VALIAÇÃO:

Haverá 1(um) trabalho prático obrigatório, ao qual será atribuída 1(uma) nota

PROGRAMA DE DISCIPLINA

DISCIPLINA: BANCO DE DADOS				CÓDIGO	: EPR - 05930
CARGA HORÁRIA SEMANAL: HORAS	TEORIA: 01		EXERCÍCIO: 0		LABORATÓRIO: 0
CARGA HORÁRIA SEMESTRAL: 30 HORAS	CRÉDITOS:		ANO		
Programa Detalhado					

variando de 0 à 10.

Os alunos com nota igual ou superior a 7,0 (sete) serão automaticamente aprovados, desde que tenham no mínimo 75% de freqüência às aulas dadas.

REVISÃO DE PROVAS

Conforme resolução nº 25/86 do conselho de ensino e pesquisa da UFES.

BIBLIOGRAFIA:

Abraham Silberschatz, Henry F. Korth & S. Sudarsha. Sistema de Banco de Dados. 3a edição. Campus, 2006.

C. J. Date. An Introduction to Database Systems. 8th edição. Addison-Wesley, 2003.

Ramez Elmasri & Shamkant B. Navathe. Fundamentals of Database Systems. 5th edition. Addison-Wesley, 2006.

Álvaro Pereira Neto. PostgreSQL: Técnicas Avançadas – Versões Open Source 7.x. 1a edição. Érica, 2003.

Raghu Ramakrishnan & Johannes Gehrke. Database Management Systems. 3rd edition. McGraw-Hill, 2002.

Carlos A. Heuser. Modelagem de Banco de Dados. 4a edição. Heuser, 2001.

Ем/	I	I	
			ASSINATURA DO CHEFE DO DEPARTAMENTO

EMENTA:

Funções do AutoCAD: configuração, criação de objetos gráficos, comandos de precisão, modificação de objetos, propriedades dos objetos, dimensionamento, criação de blocos, plotagem.

TÓPICO 1

Considerações iniciais: Revisão de comandos básicos do Windows. Conceitos e importância do CAD.

TÓPICO 2

PROGRAMA DE DISCIPLINA

DISCIPLINA: BANCO DE DADOS

CARGA HORÁRIA SEMANAL: HORAS

CARGA HORÁRIA SEMESTRAL: 30 HORAS

CRÉDITOS:

CARGA HORÁRIA SEMESTRAL: 30 HORAS

CRÉDITOS:

CARGA HORÁRIA SEMESTRAL: 30 HORAS

CRÉDITOS:

ANO:

Interface do AutoCAD: barras de ferramentas, menus, área gráfica, etc.

TÓPICO 3

Manipulação de arquivos (NEW, OPEN, SAVE, etc).

TÓPICO 4

Ajustes do ambiente de trabalho – comandos de precisão: coordenadas, DRAWING LIMITS, GRID, SNAP, etc.

TÓPICO 5

Comandos de correção: ERASE, UNDO, REDO, OOPS, SNAP, etc.

TÓPICO 6

Visualização do desenho na tela: ZOOM realtime, PAN realtime, flyout ZOOM, REGEN, REDRAW, etc.

TÓPICO 7

Criação de objetos gráficos: LINE, CIRCLE, DONUT, RECTANGLE, PLINE, etc.

TÓPICO 8

Comandos de precisão: utilizando a atração a pontos notáveis durante a edição de desenhos – OSNAP.

TÓPICO 9

Modificação de objetos: COPY, OFFSET, ARRAY, MOVE, ROTATE, TRIM, CHAMFER, FILLET, EXPLODE, BRAK, etc.

TÓPICO 10

Dimensionamento / cotação: DIMLINEAR, DIMALIGNE, DIMORDINATE, DIMRADIUS, etc.

TÓPICO 11

Textos: DTEXT, MTEXT, etc.

TÓPICO 12

Utilização de hachuras.

TÓPICO 13

Utilização de biblioteca das propriedades dos objetos: LAYER, COLOR, LINETAPE,

PROGRAMA DE DISCIPLINA

DISCIPLINA: BANCO DE DADOS CÓDIGO: EPR - 05930					: EPR - 05930
CARGA HORÁRIA SEMANAL: HORAS	TEORIA: 01		Exercício: 0		LABORATÓRIO: 0
CARGA HORÁRIA SEMESTRAL: 30 HORAS		CRÉDITOS:		ANO:	
PROGRAMA DETALHADO					

PROPERTIES, etc.

TÓPICO 14

Criação e modificação das propriedades dos objetos: LAYER, COLOR, LINETYPE, PROPERTIES, etc.

TÓPICO 15 Plotagem

OBJETIVO:

A disciplina de Tópicos Especiais em Desenho Auxiliado por Computador para Engenharia tem como objetivo transmitir conhecimento básico sobre computação gráfica, fornecendo comandos básicos de CAD, permitindo que o aluno obtenha condições para execução de projetos na área de engenharia.

METODOLOGIA:

- aulas teóricas expositivas / aulas práticas em laboratório
- seminários, estudos dirigidos, debates / trabalhos práticos e elaboração de relatórios

SISTEMA DE AVALIAÇÃO:

Haverá 01(uma) prova teórica e 1(um) trabalho prático obrigatório com defesa do mesmo, aos quais serão atribuídas 2(duas) notas variando de 0 à 10. A média aritmética destas notas será representada por uma nota única, denominada média parcial.

Uma 2ª prova para verificação final, também com nota variando de zero a dez, será aplicada aos alunos com média parcial inferior a 7,0 (sete).Os alunos com média parcial igual ou superior a 7,0 (sete) serão automaticamente aprovados com média final igual a parcial, desde que tenham no mínimo 75% de freqüência às aulas dadas.

Os alunos com média parcial inferior a 7,0 (sete) terão suas médias multiplicadas por 2 e somadas a nota de verificação final que dividido por três gera a média final.

REVISÃO DE PROVAS

Conforme resolução nº 25/86 do conselho de ensino e pesquisa da UFES.

PROGRAMA DE DISCIPLINA

DISCIPLINA: BANCO DE DADOS				Código:	EPR - 05930
CARGA HORÁRIA SEMANAL: HORAS	TEORIA: 01		EXERCÍCIO: 0		LABORATÓRIO: 0
CARGA HORÁRIA SEMESTRAL: 30 HORAS		CRÉDITOS:		ANO:	
PROGRAMA DETALHADO					

BIBLIOGRAFIA:

AUTODESK Guia do usuário AutoCAD 2007. São Paulo: Autodesk, 2006.

OMURA, G. Dominando o AutoCAD 2000. Rio de Janeiro: LTC, 2000.

EM/	
	ASSINATURA DO CHEFE DO DEPARTAMENTO
EMENTA:	
latas due a Demanda a Caffica OD	Conversional a Divital Comes Plance

Introdução.Representação Gráfica 2D – Convencional e Digital. Curvas Planas. Manipulação de Imagens. Fundamentos de Representação Espacial 3D. Projeções. Superfícies de Representação. Dispositivos Periféricos Gráficos. Imagens.

1. Introdução

- 1.1. Origens da Representação gráfica
- 1.2. O que é Representação gráfica
- 1.3. Visão geral dos procedimentos em representação gráfica
 - 1.3.1. Representação de objetos gráficos
 - 1.3.2. Manipulação de objetos gráficos
 - 1.3.3. Exibição de objetos gráficos

2. Representação Gráfica 2D - Convencional e Digital

- 2.1. Visualização de objetos 2D
- 2.2. Transformações geométricas 2D
- 2.3. Objetos e cenas 2D
- 2.4. Pontos, Linhas e Polígonos

3. Curvas Planas

- 3.1. Introdução
- 3.2. Representação de curvas

4. Manipulação de Imagens

- 4.1 Tipos de Imagens: True-Color e de Palette
- 4.2 Redução do número de cores
- 4.3 Técnicas de impressão de imagens
- 4.4 Filtros

5. Fundamentos de Representação Espacial - 3D

- 5.1. Sistemas de coordenadas espaciais
- 5.2. Visualização de objetos 3D

PROGRAMA DE DISCIPLINA

DISCIPLINA: BANCO DE DADOS

CARGA HORÁRIA SEMANAL: HORAS

CARGA HORÁRIA SEMESTRAL: 30 HORAS

CRÉDITOS:

PROGRAMA DETALHADO

CÓDIGO: EPR - 05930

LABORATÓRIO: 0

LABORATÓRIO: 0

ANO:

6. Modelagem Geométrica

- 6.1. Formas de representação de objetos 3D (Volumes)
- 6.2 Técnicas de Modelagem de Objetos

7. Eliminação de Superfícies Escondidas

- 7.1. Eliminação de faces traseiras
- 7.2. Algorítmos para representação espacial

8. Modelos de tonalização

- 8.1 Cálculo de cor de uma superfície
- 8.2 Tipos de Luz: ambiente, difusa e especular
- 8.3 Métodos de Tonalização

9. Dispositivos Periféricos Gráficos

- 9.1. Dispositivos periféricos gráficos
- 9.2. Conceito de independência de dispositivo

10. Projeto de Produtos Gráficos

- 10.1. Implementação
- 10.2. Programação Visual
- 10.3. Comunicação Visual do produto

11. Imagens

- 12.1 Introdução
- 12.2 Técnicas de processamento de imagens

OBJETIVO:

Aquisição de conhecimentos teóricos e práticos no campo da Engenharia de Produção quanto ao domínio dos conceitos básicos de representação gráfica 2D e 3D.

METODOLOGIA:

- aulas teóricas expositivas / aulas práticas em laboratório
- seminários, estudos dirigidos, debates / trabalhos práticos e elaboração de relatórios

SISTEMA DE AVALIAÇÃO:

Haverá 01(uma) prova teórica e 1(um) trabalho prático obrigatório com defesa

PROGRAMA DE DISCIPLINA

DISCIPLINA: BANCO DE DADOS				CÓDIGO	EPR - 05930	
CARGA HORÁRIA SEMANAL: HORAS	TEORIA: 01		EXERCÍCIO: 0		LABORATÓRIO: 0	
CARGA HORÁRIA SEMESTRAL: 30 HORAS	PRÁRIA SEMESTRAL: 30 HORAS CRÉDITOS: ANO			ANO:		
Programa Detalhado						

do mesmo, aos quais serão atribuídas 2(duas) notas variando de 0 à 10. A média aritmética destas notas será representada por uma nota única, denominada média parcial.

Uma 2ª prova para verificação final, também com nota variando de zero a dez, será aplicada aos alunos com média parcial inferior a 7,0 (sete).Os alunos com média parcial igual ou superior a 7,0 (sete) serão automaticamente aprovados com média final igual a parcial, desde que tenham no mínimo 75% de freqüência às aulas dadas.

Os alunos com média parcial inferior a 7,0 (sete) terão suas médias multiplicadas por 2 e somadas a nota de verificação final que dividido por três gera a média final.

REVISÃO DE PROVAS

Conforme resolução nº 25/86 do conselho de ensino e pesquisa da UFES.

BIBLIOGRAFIA:
Angell, Ian O. High-resolution computer graphics using C 1993 006.6 A583h
Artwick, Bruce A. Applied concepts in microcomputer graphics 1984 CG0435 IPCT
Burdea, Grigore Virtual reality technology 1994 006.6 B949v
Earnshaw, R. A. Virtual reality applications 1995 006.6 V819va
Glassner, Andrew S. et al. Graphics Gems 1992 ME 006.6 G766g
Hégron, Gérard Image synthesis : 1988 006.61 H464ia
Krueger, Myron W. Artificial reality 1991 CG4331
MALING, D. H. <i>Coordinate Systems and Map Projection</i> , Oxford: Pergamon Press, 2a. edição, 1993.
Wolberg, George Digital image warping 1992 006.61 W848d

Ем//	
	Assinatura do Chefe do Departamento

PROGRAMA DE DISCIPLINA

DISCIPLINA: BANCO DE DADOS CÓDIGO: EPR - 05930

CARGA HORÁRIA SEMANAL: HORAS TEORIA: 01 EXERCÍCIO: 0 LABORATÓRIO: 0

CARGA HORÁRIA SEMESTRAL: 30 HORAS CRÉDITOS: ANO:

PROGRAMA DETALHADO